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Children with congenital heart defects and patients with faulty or failing valves 

have the need for a suitable aortic heart valve replacement. Current treatment options 

have several downfalls and heavy investigation is being done into the design of an 

engineered valve to find an alternative that would alleviate many of these issues. 

Understanding the physiology of how cells interact in vivo is crucial to the construction 

of such valve. This study investigates the effect of cyclic strain in aortic valve endothelial 

cells on the adhesion molecules, PECAM-1, 1-Integrin, VE-Cadherin and Vinculin. 

Experiments found that cyclic strain plays a role in the development of cell/cell and 

cell/extracellular matrix adhesions and junctions and is extremely important in the pre-

conditioning of a tissue engineered construct. Without this strain the new valve would be 

more susceptible to inflammation, injury or possible failure after being implanted into the 

patient. 
 
 



www.manaraa.com

 

ii 

DEDICATION 

This research is dedicated to my parents, Todd and Lisa Mauldin. Thank you for 

the love, encouragement, support, and inspiration you have provided me. For your 

constant sacrifice and generosity, I am truly grateful. You instilled in me the belief that 

through hard work, anything is possible.  

To Alex, you are my rock. Thank you for having the answers to all my questions. 

Going through this process with you made it that much more enjoyable. I am so proud to 

call you my husband. 

To all my friends and family, thank you for helping me become the person I am 

today. I appreciate and love each and every one of you. 



www.manaraa.com

 

iii 

ACKNOWLEDGEMENTS 

I would like to acknowledge the students and staff of Mississippi State 

Universtity. In particular the entire Agriculture and Biological Engineering Department 

and Bill Monroe and Amanda Lawrence at the Electron Microscope Center, all have been 

instrumental to this work. I want to thank all my committee members for the time and 

thought they have given to this work. I am thankful to Dr. James Warnock for his input 

and guidance throughout this study. I am forever thankful for my husband. Alex 

McIntosh and my parents, Todd and Lisa Mauldin, for their unending love, motivation 

and support.  

 



www.manaraa.com

 

iv 

TABLE OF CONTENTS 

 Page 

DEDICATION .................................................................................................................... ii 

ACKNOWLEDGEMENTS ............................................................................................... iii 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

LIST OF ABBREVIATIONS ..............................................................................................1 

CHAPTER 

I. INTRODUCTION .............................................................................................1 

Physiology of the Heart .....................................................................................1 

Aortic Valve Structure .......................................................................................3 

Aortic Valve Cells..............................................................................................5 

Mechanical Environment ...................................................................................6 

Aortic Valve Disease .........................................................................................7 

Current Treatment Options ................................................................................9 

Tissue Engineering...........................................................................................12 

Proteins of Interest ...........................................................................................14 

Objective and Scope of Study ..........................................................................16 

II. METHODS ......................................................................................................18 

Cell Isolation and Culture ................................................................................18 

Application of Cyclic Strain/ FX-4000T  Flexercell  Tension Plus  ........19 

Laser Scanning Confocal Microscopy .............................................................21 

Protein Quantification ......................................................................................23 

Statistical Analysis ...........................................................................................24 

III. RESULTS ........................................................................................................25 

Protein Quantification ......................................................................................25 

Confocal Laser Scanning Microscopy .............................................................28 



www.manaraa.com

 

v 

IV. DISCUSSION ..................................................................................................34 

V. CONCLUSION AND FUTURE STUDIES ....................................................41 

Conclusion .......................................................................................................41 

Future Studies ..................................................................................................42 

REFERENCES ..................................................................................................................43 

APPENDIX 

A PROTOCOLS ..................................................................................................49 

Confocal Microscope of Collagen Membranes ...............................................50 

Seeding Flexercell Plates .................................................................................52 

Cyropreservation ..............................................................................................53 

Freezing......................................................................................................53 

Thawing and Recovery ..............................................................................53 

General Lysate Protocol ...................................................................................55 



www.manaraa.com

 

vi 

LIST OF TABLES 

TABLE Page 

 A.1 Reagents for Fluorescent Staining ......................................................................51 

 A.2 Reagents for Cell Culture and Cyropreservation ...............................................54 

 A.3 Reagents for Lysates ..........................................................................................55 

 



www.manaraa.com

 

vii 

LIST OF FIGURES 

FIGURE Page 

 1.1 The anatomy and blood flow of the human heart. Right side of the heart 
is shown in blue and left side in red.  Form 
(texasheartinstitute.com). .........................................................................2 

 1.2 The heart in systole and diastole. From (prenhall.com). ......................................3 

 1.3 Aortic root and leaflet structure. From (1). ..........................................................4 

 1.4 Layers of the aortic valve. From (7). ....................................................................5 

 1.5 Different options for aortic valve replacement. From (medindia.com). ..............9 

 1.6 The tissue engineering paradigm is the logical progression from cell 
course to implantation. The paradigm starts with a decision 
regarding cell course and scaffold material. Then the seeded 
construct needs to mature in vitvo . Finally, the tissue is 
implanted into the patient and the construct undergoes in vivo 
remodeling to produce a functional replacement tissue or organ 
(34). ........................................................................................................14 

 2.1 Schematic of the FX-4000TM Flexercell® Tension PlusTM system. 
Collagen Type I BioflexTM plates are seeded with cells and 
stretched in an incubator via application of cyclic negative 
vaccum pressure. ....................................................................................20 

 2.2 Stress distribution in the Flexcell membranes being stretched by 
negative vacuum pressure over a loading post. Endothelial cells 
are centrally seeded for uniform radial and circumferential 
profiles. From (50). ................................................................................21 

 3.1 Level of PECAM-1 protein concentration in cell lysates isolated from 
FECs and VECs exposed to cyclic strain for 24h. Bars represent 
mean values. Error bars represent standard deviation (n=3). .................26 



www.manaraa.com

 

viii 

 3.2 Level of 1-Integrin protein concentration in FECs and VECs exposed 
to cyclic strain for 24h. Bars represent mean values. Error bars 
represent standard deviation (n=3). * denotes statistically 
significant up-regulation when compared to static culture (p 

0.05). # denotes significant difference between cell types for 
that strain condition (p 0.05). ...............................................................26 

 3.3 Level of VE- Cadherin protein concentration in FECs and VECs 
exposed to cyclic strain for 24h. Bars represent mean values. 
Error bars represent standard deviation (n=3). * denotes 
statistically significant up-regulation when compared to static 
culture (p 0.05). # denotes significant difference between cell 
types for that strain condition  (p 0.05). ...............................................27 

 3.4 Level of Vinculin protein concentration in FECs and VECs exposed to 
cyclic strain for 24h. Bars represent mean values. Error bars 
represent standard deviation (n=3). * denotes statistically 
significant increase when compared to static culture (p 0.05). # 
denotes significant difference between cell types for that strain 
condition at (p 0.05). ............................................................................28 

 3.5 Confocal laser scanning microscopy images of FECs (A, C, E) and 
VECs (B, D, F) under static conditions (A, B) and exposed to 
24hr of cyclic stretch at 10% (C, D), and 20% (E, F). Blue cell 
nuclei, red F-actin, and green PECAM-1. Scale bars represent 
10 m. ....................................................................................................30 

 3.6 Confocal laser scanning microscopy images of FECs (A, C, E) and 
VECs (B, D, F) under static conditions (A, B) and exposed to 
24hr of cyclic stretch at 10% (C, D), and 20% (E, F). Blue cell 
nuclei, red F-actin, and green 1-Integrin. Scale bars represent 
10 m. ....................................................................................................31 

 3.7 Confocal laser scanning microscopy images of FECs (A, C, E) and 
VECs (B, D, F) under static conditions (A, B) and exposed to 
24hr of cyclic stretch at 10% (C, D), and 20% (E, F). Blue cell 
nuclei, red F-actin, and green VE-Cadherin. Scale bars represent 
10 m. ....................................................................................................32 

 3.8 Confocal laser scanning microscopy images of FECs (A, C, E) and 
VECs (B, D, F) under static conditions (A, B) and exposed to 
24hr of cyclic stretch at 10% (C, D), and 20% (E, F). Blue cell 
nuclei, red F-actin, and green Vinculin. Scale bars represent 10 

m. .........................................................................................................33 



www.manaraa.com

ix 

LIST OF ABBREVIATIONS 

AV=Aortic Valve   

MV= Mitral Valve 

PV= Pulmonary Valve 

TV= Tricuspid Valve 

CVD= Cardiovascular  Disease    

AVEC=Aortic Valve Endothelial Cell 

PAVEC=Porcine  Aortic  Valve  Endothelial  Cell    

VIC=Valve Interstitial Cell 

VEC=Valve Endothelial Cell 

EC=Endothelial Cell 

FEC=Fibrosa Endothelial Cell 

VEC=Ventricularis Endothelial Cell 

ECM=Extracellular Matrix 

 PECAM--1=Platelet  Endothelial  Cell  Adhesion  Molecule   

 TVP=Transvalvular Pressure    

TE=Tissue Engineered 

LSM=Laser Scanning  Microscopy



www.manaraa.com

 

1 

CHAPTER I 

INTRODUCTION 

Physiology of the Heart 

The heart is responsible for pumping blood through the body by a series of 

repeated contractions. The heart is divided into four chambers, two atria and two 

ventricles, along with a system of valves that assist transfer of blood through these 

chambers. Deoxygenated blood enters the heart at the right atrium and then passes to the 

right ventricle through  the tricuspid valve. From the ventricle deoxygenated blood is 

passed to the lungs through the pulmonary valve and arteries where it is oxygenated. 

Oxygen nourished blood is then transported from the left atrium through the mitral valve 

into the left ventricle. Finally, the left ventricle blood into the aorta and on into systemic 

circulation.  A diagram of the human heart is shown in Figure 1.1.  

Flow and oxygenation of blood in the heart is made possible by heart valves that 

force a unidirectional flow.  Heart valves are fibrous structures that passively move in 

response to the mechanical stimuli of blood flow and pressure.  The four heart valves are 

classified as atrioventricular or semilunar values.  The artioventricular valves, named for 

their position between artia and ventricles, are the mitral value (MV) and tricuspid valve 

(TV). The semilunar valves are composed of three half moon shaped cusps and consist of 

the aortic valve (AV) and the pulmonary valve (PV). These valves are responsible for 

transfer of blood from the ventricles into the aorta or pulmonary artery. 
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Figure 1.1 The anatomy and blood flow of the human heart. Right side of the heart is 
shown in blue and left side in red.  Form (texasheartinstitute.com). 

The cardiac cycle is the name given to the events of blood flow and pressure that 

occur from the beginning of one heartbeat to the beginning of the next. The cycle is 

broken up into two phases, systole and diastole. During systole the ventricles contract and 

blood is ejected. This occurs while the artrioventricular valves are closed and blood 

passes freely through the semilunar values and out the aorta or pulmonary artery (Figure 

1.2). These valves then snap shut and prevent blood flow back into the ventricles, also 

known as regurgitation.  Once these values close the process of diastole begins where the 
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ventricles are filled. During this time the artrioventricular valves are open to allow blood 

to flow from the atrium into the ventricles (Figure 1.2). 

 

 

Figure 1.2 The heart in systole and diastole. From (prenhall.com). 

Aortic Valve Structure 

The aortic valve allows ejection of blood flow out of the left ventricle during 

systole and prevents regurgitation of blood back into the ventricle during diastole. The 

AV functions in combination with the aortic root, which connects the heart to the 

circulatory system. The aortic root has multiple parts that function in relationship with 

one another; these include the annulus, inter-leaflet triangles, sinotubular junctions, 

sinuses, and the aortic valve leaflets (Figure 1.3). The AV is tricuspid, having three cusps 

or leaflets that are semilunar. Each leaflet has four structural areas; the hinge region that 

joins the leaflet to the root, the belly that composes the center suspended region, the 

coapting surface which seals the three leaflets together, and the lanula which contains a 

small section of tissue named the nodule of Arantii. These sections work along side each 

other for the health and function of the valve.  
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Figure 1.3 Aortic root and leaflet structure. From (1). 

The aortic valve leaflets function together to allow blood to pass through and 

enter the body’s circulation while also preventing back flow of blood. The aortic valve’s 

fibrous structure gives it extremely flexibility along with intense mechanical strength. 

These leaflets tri-layered structure contributes to its remarkable properties (Figure 1.4).  

This makeup consists of the aorta facing fibrosa, middle spongiosa region and the 

ventricle facing ventricularis (2). The fibrosa layer constitutes 45% of the total thickness 

of the valve and is subjected to extreme amounts of shear stress due to flow of blood 

coming from the ventricle during systole. The fibrosa is comprised of collagen fibers 

oriented in the circumferential direction that help bear most of this mechanical stress 

(2,3,4,5). The internal layer, the spongiosa is a gelatinous region that comprises 35% of 

total valve thickness and contains a high concentration of glycosaminoglycans. This 

section functions to connect the fibrosa and ventricualris and has some stress dissipating 

properties (6). The ventricle facing layer, ventricularis composes 20% of total valve 
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thickness and is made up of a dense network of collagen and elastin. These fibers are 

oriented in the radial direction (5). Figure 1.4 illustrates the layers of the AV. The AV is 

in a continuous preloaded state where the fibrosa is under constant compression and the 

ventricularis under tension (5). This state can contribute to the properties of the collagen 

and elastin that makeup each layer of the leaflet.  

 

 

Figure 1.4 Layers of the aortic valve. From (7). 

Aortic Valve Cells 

The aortic valve consists of two cell types, the endothelial cells (AVECs), which 

line the surface, and the interstitial cells (AVICs) that populate the interstitum of the 

valve. The endothelium is a thin layer of cells that lines the interior surface of blood 

vessels and provides an interface between circulating blood and the rest of the vessel 

wall.  These cells are endothelial cells (ECs) and they line the entire circulatory system 
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and any surface that comes in direct contact with blood. These cells work to provide a 

non-thrombogenic surface and to sense and respond to circulating stimuli in the blood 

stream. These cells are extremely sensitive to alterations in their hemodynamic and 

mechanical environments. The endothelial cells of the AV line both the fibrosa and 

ventricularis surfaces of the valve. The ECs are maintained on a layer of fibronectin and 

collage type IV (8).  This sub-endothelial layers have been shown to be similar on both 

side of the valve with respect to height, pore diameter, pore depth and fiber diameter. 

AVECs have been shown to be incredibly responsive to fluid shear stress, cyclic pressure 

and cyclic strain (9).  AVECs behave differently than various other ECs along the 

vasculature.  When tested against laminar flow, aortic ECs, like most endothelial cells, 

were seen to align with the direction of flow. However valvular ECs were shown to align 

perpendicular to the flow, indicating a distinct phenotype (10). In addition, aortic ECs 

have a distinct phenotype and gene expression profile when compared to vascular ECs 

(11, 12). Several studies have also shown that ECs isolated from different sides of the 

valve behave differently and have different transcription profiles (13). These findings 

launched studies to investigate the response of valvular ECs to mechanical forces.  

Mechanical Environment 

The aortic valve exists in an intense and physically demanding mechanical 

environment. It is constantly under a variety of complex and dynamic forces. The AV 

must fully open and close in excess of 3 billion times over the span of an average 

lifetime. The blood volume that passes through the aortic valve varies from 1-20L per 

minute (14).  Average blood volume through the AV at rest is 5L per minute. The total 

stress on a leaflet during systole is approximately 50kPa and near 500kPa during diastole 
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(15). The fibrosa surface bears more diastolic load while the ventricularis takes on the 

systolic load. Left ventricle ejection bears a fluid shear stress on the AV due to blood 

flow at a peak rate of 1.35 +/- .35 m/s (16). Wall shear stress on the surface of the leaflet 

has been reported varying from 20 dynes cm-2 to 1000 dynes cm-2
. (17-19). The AV also 

experiences high transvalvular pressure (TVP) where a TVP of 80 mmHg represents 

physiological conditions and 100-120mmHg represent diastolic blood pressure for stage I 

and stage II hypertension. The TVP dictates the strain of the aortic valve. This strain can 

occur in both the radial and circumferential direction and can vary greatly in magnitude.  

Aortic Valve Disease 

Cardiovascular Disease (CVD) represents a variety of conditions and pathologies 

that include heart failure, hypertension, stroke, myocardial infarction, congenital heart 

defects, angina pectoria, valve defects and arthrosclerosis. 1 in 3 Americans have been 

diagnosed with some type of CVD making CVD the most common cause of death in the 

United States. The number of deaths from CVD is greater than the combined types of 

cancer. One of the most common CVD related surgeries is heart valve replacement and 

the most common replacement is the aortic valve (20). In 2005, there were 43,900 deaths 

nationwide from valvular heart disease with 27,390 attributed to aortic valve disease. 

Additionally of 93,000 valve disease related hospital discharges, over half, 49,000 were 

from aortic valve disease issues and complications (21). The risk for myocardial 

infarction and death from a cardiovascular related disease is increased 50% when aortic 

valve sclerosis is present (22).  

The aortic valve is responsible for allowing oxygenated blood to leave the heart 

and enter the body’s circulation. Any obstruction or impeding force of this valve can 
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have severe consequences for not only heart function but entire body function. 

Abnormalities of the aortic valve can fall into two categories, aortic stenosis and aortic 

regurgitation.  Aortic valve stenosis is characterized by the significant obstruction of 

blood flow due to a constricted valve. Stenosis can be caused by a build up of calcium or 

scar tissue on the valve or be present at birth as a congenital defect. A precursor to 

stenosis is aortic valve sclerosis, which is defined as a thickening and calcification of a 

normal aortic valve but causes no impedance of blood flow. The second type of AV 

disease is aortic regurgitation, which occurs when retrograde blood is allowed to dump 

back into the ventricle during ventricle filing following valve closure. Regurgitation 

reduces net blood flow to the circulatory system.  Both types of AV disease can occur 

simultaneously or individually. Improper functioning of the aortic valve can have severe 

consequences; the heart is required to work harder to supply the body’s circulation with 

oxygen and nutrients. This causes thickening of the ventricular wall, which eventually 

leads to ventricular hypertrophy and congestive heart failure.  

Congenital heart defects sre the most common birth defect in newborns and occur 

in approximately 1 percent of births.  In the United States more than 1 million adults are 

living with a congenital heart defect. The defect can involve the walls or the valves of the 

heart and include mitral value prolapse, aortic dilation, ventricular septal defect, 

pulmonary stenosis, right ventricular hypertrophy and an overriding aorta. Many 

congenital heart defects require extensive treatment, which currently requires surgical 

intervention.  
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Current Treatment Options 

With the high instance of aortic valve disease there is a strong need for innovative 

solutions to degenerative valves. More than 100,000 US patients require a total valve 

replacement every year (23). Currently there are several options for valve treatment or 

replacement but none are completely ideal. Among these treatments are mechanical or 

tissue valves, which include bioprosthetic valves (from porcine or bovine source) or a 

allograft from a human source. Choice of valve type is dependent on the needs of the 

patient.  Figure 1.5 illustrates the different types of valve replacements.  
 

 

Figure 1.5 Different options for aortic valve replacement. From (medindia.com). 
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The term tissue valve is used to describe two types of valves, an allograft or a 

xenograft replacement. Tissue heart valves are used in more than half of all valve 

replacements (24). Allografts or homografts are valves taken from human cadavers or 

from diseased hearts after removal for transplant. These valves are in theory a more ideal 

choice because of the valves extreme structural similarity. These valves are preserved 

without chemical cross-linking before transplant into the new patient. Allograft valves 

have good hemodynamic properties, a low infection rate and low incidence of 

thromboembolic complication (2). The defeat of these valves is their progressive 

degeneration that limits their long time success. This problem usually leads to failure of 

the bioprosthesis, cuspal malfunction and noncalcific structural damage (25). These 

valves are similar to bioprosthetic valves in that they both face possible damage from the 

preservation process and handling but these valves are also void of cells. In both valve 

types the collagenous network is initially present but is incapable of renewing (2). 

Therefore, implanted cyropreserved allograft valves exhibit a void of cells, loss of 

distinct structural features and extensive collagen degradation (26).  

Bioprosthetic valves or xenografts are taken from either of bovine or porcine 

source and implanted in place of a patient’s native valve. Porcine valves are chosen for 

their large availability and structural and hemodynamic similarities. Bovine valves are 

fabricated from 3 cut pieces of the animal’s pericardium and attached to a supporting 

stent. These valves are treated with gluteraldehyde that kills the cells in the valve to 

reduce and prevent antigenicity and proteolytic degradation following implantation. The 

resulting cell death can lead to calcification and stiffening of the valve after implantation, 

leading to the need for yet another replacement. Similarly to allograft valves, these valves 

are incapable of repair and any damage to the extracellular matrix is cumulative. The 
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clinical success, failure modes and mechanisms of deterioration are extremely dependent 

on course, preservation and handling of the tissue prior to implantation. The method of 

tissue attachment can also have an effect due to the method determining the stress state of 

the tissue during the cardiac cycle (2).  

A final tissue solution is a Ross procedure also known as a PV-to-AV autograft. 

This procedure consists of transplanting the individual’s PV to replace their ineffective 

AV and then the PV is replaced by an artificial valve. This procedure generally has good 

results with patient’s hemodyanamic performance, can allow for remodeling and injury 

response and can allow for growth with a child or young adult. This technique also 

reduces the need for anticoagulation therapy that is needed for mechanical replacement 

and can allow the patient to lead an active lifestyle. 

Mechanical valves are another alternative in valve replacement. Mechanical 

valves exist in several forms but are generally made from pyrolytic carbon coasted metal 

surfaces (27). This material is used for its excellent biocompatibility and 

thromboresistence, high fatigue strength and wear resistance. These mechanical valves 

can be composed of a mobile occluder in a metallic cage or be a set of tilting disks that 

are attached to a carbon ring. These valves open and close passively from the changes in 

pressure and blood flow during the cardiac cycle. These valves are favorable for their 

structural durability, but they suffer from two limitations. They contain hinged designs 

and components that must remain inside the flow zone which results in intense 

physiological shear stresses that can induce platelet lysis and protein aggregation on the 

valve surface. Even with over 40 years of research and development no mechanical valve 

can overcome this hurdle (28). Secondly, all mechanical valve recipients must go through 

anticoagulation treatment for the rest of their lives. This drug therapy has serious 
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occupational and lifestyle restrictions. Even with life alerting drug treatments mechanical 

valve patients have a 2-5% annually cumulative risk of suffering a serious bleeding event 

such as hemorrhage, stroke or infarction (29). 

Tissue Engineering 

Tissue engineering is an emerging area of science that formed out of a 

relationship between engineering and biology to create a new tissue or organ to replace a 

dysfunctional tissue. This area of science has the potential to offer many solutions to 

medical and biological problems. Simmons defined tissue engineering as a set of tools at 

the interface of biomedical and engineering sciences that uses living cells or attracts 

endogenous cells to assist tissue formation or regeneration and creates a therapeutic or 

diagnostic benefit (13). The basic characteristics of a heart valve replacement were given 

in 1962 by Dr. Dwight Harken and extended by Sacks and Schoen for tissue engineered 

valves (30). 1) It must be non-obstructive, 2) closure must be prompt and complete, 3) it 

must be non-thrombogenic and non-immunogenic, 4) it must accommodate the somatic 

growth of the recipient, and 5) must last a lifetime of the patient in an environment that 

requires it to be durable enough to endure millions of load cycles and be capable of 

ongoing remodeling. The goal of generating a living heart valve replacement would be a 

valve that has healthy cells, can repair ongoing extracellular matrix (ECM) damage, adapt 

to a changing environment and grow with a growing recipient (2). The ability of this 

heart valve will depend, on its living cellular component (VECs and VICs) to function 

normally, maintain homeostasis, and repair structural injury to the ECM (23, 31). 

Generally, cells are seeded onto a synthetic, porous, biocompatible and biodegradable 

polymer scaffold in the shape of a trileaflet valve and given time to grow and develop in 
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a bioreactor prior to implantation (32). The scaffold will then be constructed to degrade 

and be replaced by the newly formed ECM.  

Recellularization of a decellurized allograft valve does occur but its focus is 

limited to the regions of the arterial wall and the cusp base (33). The process of in vitro 

cell seeding prior to implantation is more attractive for introducing a cell population. The 

key phases that have to occur during in vitvo  and in vivo tissue formation and maturation 

are cell proliferation, sorting, and differentiation, ECM production and organization and 

degradation of polymer scaffold and remodeling and possibly growth of the tissue along 

side the growth rate of the individual. Figure 1.6 illustrates the tissue engineering 

paradigm.  
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Figure 1.6 The tissue engineering paradigm is the logical progression from cell course 
to implantation. The paradigm starts with a decision regarding cell course 
and scaffold material. Then the seeded construct needs to mature in vitvo . 
Finally, the tissue is implanted into the patient and the construct undergoes 
in vivo remodeling to produce a functional replacement tissue or organ 
(34). 

Proteins of Interest 

Heart Valves experience a plethora of forces, fluid shear stress and cyclic strain 

act directly on the endothelial cells that line the valve. AVECs experience contact 

guidance where cell morphology is influenced by the stability of the ECM, focal 

adhesions and cytoskeletal elements (35). As forces deform the cells, active cytoskeletal 

rearrangements produce a variety of signaling cascades from monocyte recruitment to 

alignment alterations.  Alterations are a result of phenotypic expressions of various 

adhesion molecules and the location of these molecules.  Cell adhesion molecules are 

proteins located on the cell surface involved with the binding of other cells or with the 
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ECM in the process of cell adhesion. These proteins are typically transmembrance 

receptors that are composed of three domains: an intracellular domain that works with the 

cytosksleton, a transmembrane domain and an extracellular domain that interacts with 

other adhesion molecules or the ECM. The adhesion molecules considered crucial for 

proper endothelial cell function and proteins of interest for this study are Platelet 

Endothelial Cell Adhesion Molecule (PECAM-1) also known as cluster of differentiation 

31 (CD31), Cadherin 5, type2 or Vascular Endothelial (VE) Cadherin, Vinculin, and 

Intergin 5 1 ( 1-Integrin).  PECAM-1 modulates recruitment of monocytes and senses 

mechanical stimuli (36). VE-Cadherin is a cell/cell adhesion molecule considered crucial 

to cell bonding and motility. It gives cells the ability to adhere in a homophilic manner 

and may play an important role in endothelial cells biology through the control of 

adhesion and organization of intercellular junctions. The integrity of intercellular 

junctions is a major determinant of the permeability of the endothelium. Cadherin is 

required to maintain a restrictive endothelial barrier.  VE-Cadherin is localized on 

cells/cell junctions (37). It’s function is dependent on another adhesion molecule 

associated with binding to the ECM, 1-Integrin. 1-Integrin is often investigated due to 

it’s predominate interaction with collagen.  It mediates attachment between a cell and 

another cell or the ECM. 1-Integrin also plays a role in cell signaling and therefore can 

define cellular shape, mobility and regulate the cell cycle. Vinculin is a vital accessory 

molecule involved in force transduction and mediating cellular response. It binds 

intregrins to F-actin networks at the intracellular face of the plasma membrane and also 

mediates cytosksletal mechanics (38). Vinculin appears to play a key role in shape 

control based on its ability to modulate focal adhesion structure and function.  
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Objective and Scope of Study 

Aortic valve disease is an overwhelming and severe health issue that poses 

problems for millions of Americans today. There is currently no ideal treatment option. 

The development of a successful aortic valve replacement would have life changing 

affects for millions of people and families. The most promising solution for the problem 

of AV disease is the development of a tissue engineered valve that can be implanted into 

the patient and last their lifetime thus depleting the need for further surgery or medical 

therapy. There is still a long journey of research before a viable valve can be constructed 

but every piece of the puzzle is useful in the design of a successful tissue. 

The ideal tissue engineered heart valve should elicit no adverse or out of the 

ordinary response. The aim of this study is to further characterize the in vitro  response of 

VECs to mechanical forces to ensure that preconditioning is necessary for a successful 

tissue engineered valve. A thorough understanding of cell behavior is needed to predict 

and prevent adverse reactions or failure of the valve following implantation. The new 

valve will face a harsh and demanding environment once it is implanted into the body. 

There have been several studies that have shown the extreme environment is necessary in 

maintaining homeostasis in the AV and without mechanical forces the valve can have 

structural and mechanical changes (39-42) The practice of mechanical preconditioning 

has been shown to improve microstructure and mechanical properties and formation of 

the extracellular matrix (43, 44).  

The objective of this study is to investigate the affect of cyclic strain on several 

cell matrix and cell-cell interaction proteins in AVECs. The understanding of how these 

proteins interact with and without strain will give us understanding into what factors and 
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preconditioning techniques are needed for a heart valve construct that is as close to 

identical to a native valve as possible.  
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CHAPTER II 

METHODS 

Cell Isolation and Culture 

Porcine hearts were obtained directly following slaughter from a local abattoir 

(Sansing Meat Service Maben, MS). Female Yorkshire/Hampshire pigs were slaughtered 

before 6 months of age with post-slaughter weight of no more than 120 lbs. Valves were 

transported to the laboratory in ice-cold Dulbecco’s Phosphate Buffered Saline (PBS; 

Sigma, St. Louis, MO).  Cell culture and isolation were conducted as previously cited 

(45,46).  Freshly excised AV leaflets were pinned fibrosa (concave up) or ventricularis 

(concave down) side up on sterile rubber mat. Endothelial cells were swabbed with sterile 

cotton swabs following collagenase type II digestion (~600 U/ml; Invitrogen, Carlsbad, 

CA) for 10 minutes at 37  C and 5% CO2. The resulting cell solution was centrifuged at 

1000 rpm for 5 minutes and the pelleted cells were plated on T 12.5 cm2 tissue culture 

flasks.  Porcine Aortic Valve Endothelial Cells (PAVEC) fibrosa and ventricularis cells 

were cultured separately in Dulbecco’s Modified Eagle Medium (DMEM; Sigma, St. 

Louis, MO) supplemented with 10% Fetal Bovine Serum (FBS; Invitrogen, Carlsbad, 

CA) and 1% Anti-biotic/Anti-mycotic solution (ABAM; Invitrogen, Carlsbad, CA), using 

standard tissue culture methods. Cells were split at 75-85 % confluency from a T12.5  

cm2 flask into a T25 cm2 flask and eventually into a T75 cm2 flask. Cells were then 

maintained in T75 cm2 flasks. Cells were frozen for long-term storage and recovered as 

needed for experiments. Cobblestone morphology, contact inhibition and the presence of 
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PECAM -1 confirmed EC phenotype characterization. Fibrosa endothelial cells (FEC) 

and ventricularis endothelial cells (VEC) used for experiments were between passage 4 

and 6. 

Application of Cyclic Strain/ FX-4000T  Flexercell  Tension Plus  

There have been several studies on the response of vascular endothelial cells to 

cyclic stain. The role of oxidative stress and nitric oxide synthase expression have been 

related to cyclic strain in arterial cells (47,48,49). The Flexcell system is the most 

commonly used device to apply strain to cultured cells.  The Flexcell systems works by 

applying negative pressure to custom culture plates with a flexible silicone membrane. A 

schematic diagram of the system is shown in Figure 2.1. 

Cells were centrally seeded (~5x105/well) into 6-well BioFlexTM culture plates 

pre-coasted with collage type I (Flexcell International, Hillsborough, NC) and grown for 

24 hours in 3 ml DMEM supplemented with 10% FBS and 1%ABAM. BioFlex  plates 

were then placed in the Flexcell  FX4000-T  Tension Plus System (Flexcell 

International, Hillsborough, NC).   
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Figure 2.1 Schematic of the FX-4000TM Flexercell® Tension PlusTM system. Collagen 
Type I BioflexTM plates are seeded with cells and stretched in an incubator 
via application of cyclic negative vaccum pressure. 

This device applies negative pressure beneath the BioFlex  plate wells via a 

vacuum pump that is monitored by a pressure transducer allowing precisely defined 

equibiaxial stretch up to 30% (Figure 2.2). 25mm loading posts were used to give a 

uniform equibiaxial strain, as previously described (50). Stretch can be applied with any 

waveform and frequency; a sinusoidal waveform at 1Hz was chosen to most accurately 

mimic the cardiac cycle. Cells were flexed for 24 hours at cyclic strains of 0-10% and 0-

20%. The duration matches previous studies where ECs elicited a biological response to 
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cyclic strain over a 24 hour time frame (51). The chosen strains represent a varied range 

that would mimic biological and pathological strain conditions (52). Another group of 

plated cells were also statically cultured for 24 hours to serve as a comparison control.  

 

 

Figure 2.2 Stress distribution in the Flexcell membranes being stretched by negative 
vacuum pressure over a loading post. Endothelial cells are centrally seeded 
for uniform radial and circumferential profiles. From (50).  

Laser Scanning Confocal Microscopy  

Immediately following strain or static regimens, cells were rinsed with sterile PBS 

(all steps used just enough reagent to completely cover the cells, approximately 2mL) in 

BioFlex  plates and fixed with 4% paraformaldehyde  (Electron Microscopy Sciences. 

Hatfield, PA) in PBS for 30 minutes in the dark at room temperature under sterile 

conditions. Cells were then rinsed in 0.1% Triton X-100 (Sigma, St. Louis, MO ) and 

0.01M glycine (Sigma; St. Louis, MO) in PBS for 30 minutes to permeabilize membranes 
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and remove traces of fixative.  Cells were rinsed with 5% Bovine Serum Albumin (BSA; 

Sigma, St. Louis, MO) in PBS and then again with 5% BSA in PBS containing 5% 

Normal Goat Serum (NGS; Sigma, St. Louis, MO). Primary antibodies (mouse anti-

human, IgG1; 1-Integrin, PECAM-1, Vinculin, IgG2; VE-Cadherin, Millipore, 

Temecula, CA, 1:250 in PBS with 1%BSA) were added to cells with gentle agitation for 

overnight conjugation. Cells were rinsed in 1%BSA/PBS and again in 

5%BSA/5%NGS/PBS. Secondary antibodies  (AlexaFluor 488 rabbit anti mouse IgG1 

and IgG2, Invitrogen, 1:100 in PBS with 1%BSA) were added to cells and allowed to 

incubate for 2 hours in the dark followed by two washes with 1%BSA/PBS and a rinse in 

PBS. F-actin staining utilized AlexaFluor 635 Phalloidin (3 μg /ml, Invitrogen, 1:100 in 

PBS) for 30 minutes at 4 C. After two rinses in PBS cells were stained with DAPI 

(1:2500 in PBS, Invitrogen, Carlsbad, CA) for 15 minutes followed by 2 rinses in PBS. 

Collagen membranes were cut out of the BioFlex  plates using a scalpel and laid 

on a microscope slide and coated with Flurogel with Tris Buffer (Electron Microscopy 

Sciences, Hatfield, PA). A coverslip was adhered to the slide with clear nail polish. A 

Zeiss LSM 510 (Carl Zeiss, Thornwood, NY) confocal microscope was used with a 10 X 

or 20X objective. DAPI was visualized with a 420-480 bandpass filter. 505-530nm 

bandpass and 650nm longpass filters were used to see the fluorescent conjugated 

antibodies, Alexaflour 488 and 635 respectively.  12 bit 1024x1024 images were captured 

using plane scanning mode to acquire each image at a single focal plane. 

Carl Zeiss LSM Image Software Version 3.5.0.223 was used for image processing 

during image capture. Following image acquisition, Adobe Photoshop CS4 (Adobe 

Systems Incorporated, San Jose, CA) was used for post processing analyzing.  All image 

processing was performed according to the guidelines from The Microscopy Association 
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of American (Personal Communication- John Mackenzie).  This method utilized 

histogram stretching and gamma adjustment to avoid data manipulation that that can 

occur from conventional brightness/contrast methods. Light and dark levels are set using 

a histogram of pixel values for each fluorescent channel. Histogram stretching spreads 

data from each channel across a 4095 level (for 12 bit images) spectrum that allows for 

contrast of the data to be enhanced. This method takes care not to over represent bright 

sports or have the dark side of the pixel spectrum artificially set to black. Dark levels are 

set at the level where color is first seen, hence the first relevant pixels are set in the 

histogram and all background (area not representing a stain) is set to a histogram level of 

zero or true black. Light levels, or saturation point, are set to the first detectible pixels in 

each individual channel. This assures that the brightest pixel level is now set to the 

saturation point. Following histogram stretching, gamma levels are set sequentially across 

all channels. Identical gamma levels are used for all green channels to give accurate 

comparison between images. Images are saved in TIFF format to avoid any loss of data 

or image quality due to compression.  

Protein Quantification 

Immediately following Flexcell testing wells were washed 2 times with PBS. 

Cells were solubilized with 1ml of lysis buffer (buffer dependent on ELISA kit used) and 

allowed to sit on ice for 15 minutes. After brief and gentle scraping with a cell lifter 

(Sigma, St. Louis, MO) lysates were collected and frozen at -80  C until further testing. 

Before use, samples were centrifuged at 2000 x g for 5 minutes and supernatant was 

transferred to a clean test tube. Protein concentrations were quantified using the 

Bicinchoninic Acid Protein Assay Kit (Sigma, St. Louis, MO). Sample absorbance was 
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measured on a spectrophotometer and compared to a standard curve to determine total 

protein concentration. Protein concentrations were examined and a final working 

concentration of 130 g/ml was determined based on majority sample concentration. All 

samples were diluted in diluents specified by each ELISA. An ELISA for each molecule 

of interest (VE-Cadherin: DuoSet IC, R&D Systems, Minneapolis, MN. Integrin 5 1:  

DuoSet IC, R&D Systems. Minneapolis, MN. PECAM-1: Human ELISA Kit, Abcam, 

Cambridge, MA. Vinculin: Human VCL ELISA Kit, TSZ ELISA, Framingham, MA.) 

was performed according to included protocols. Protein concentration was determined 

using a standard curve and then graphed for FEC and VEC for each protein.  

Statistical Analysis 

Samples were run with 3 biological replicates and 2 technical replicates. One-way 

analysis of variance (ANOVA) was performed using SAS analysis software to determine 

significant differences (p  0.05) between FEC and VEC in each condition. An unpaired 

t-test was used to determine significant differences (p  0.05) between strains for FEC 

and VEC. 
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CHAPTER III  

RESULTS 

Protein Quantification 

Protein quantification by ELISA demonstrated the presence and quantity of cell 

matrix and cell-cell adhesion molecules at cyclic strains of 0-10 and 0-20% for 24 hours 

and a static condition for the same time period. Levels of PECAM-1 expression were not 

significantly different in comparison to static control samples for both FECs and VECs. 

Similarly, there was no notable difference when comparing cell types to one another 

(Figure 3.1).  When analyzing protein expression for VE-Cadherin and 1-Integrin there 

were noticeable similarities when cells were strained at 20%. Both molecules had a 

significant increase in expression when comparing cell types at the highest strain 

condition. Interestingly, FECs demonstrated a significant increase of 1-Integrin in 

comparison to VECs while VECs experienced higher quantities of VE-Cadherin in 

contrast to FECs. FECs also experienced a significant increase of 1-Integrin compared to 

static conditions along with VECs that experienced higher levels of VE-Cadherin against 

static cells (Figure 3.2, 3.3). In studies with Vinculin any presence of strain caused a 

significant up regulation of the molecule in VECs while FECs all behaved uniformly. The 

only side specific differences were observed at the static condition (Figure 3.4).  
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Figure 3.1 Level of PECAM-1 protein concentration in cell lysates isolated from 
FECs and VECs exposed to cyclic strain for 24h. Bars represent mean 
values. Error bars represent standard deviation (n=3). 

 

 

Figure 3.2 Level of 1-Integrin protein concentration in FECs and VECs exposed to 
cyclic strain for 24h. Bars represent mean values. Error bars represent 
standard deviation (n=3). * denotes statistically significant up-regulation 
when compared to static culture (p 0.05). # denotes significant difference 
between cell types for that strain condition (p 0.05). 
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Figure 3.3 Level of VE- Cadherin protein concentration in FECs and VECs exposed to 
cyclic strain for 24h. Bars represent mean values. Error bars represent 
standard deviation (n=3). * denotes statistically significant up-regulation 
when compared to static culture (p 0.05). # denotes significant difference 
between cell types for that strain condition  (p 0.05). 
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Figure 3.4 Level of Vinculin protein concentration in FECs and VECs exposed to 
cyclic strain for 24h. Bars represent mean values. Error bars represent 
standard deviation (n=3). * denotes statistically significant increase when 
compared to static culture (p 0.05). # denotes significant difference 
between cell types for that strain condition at (p 0.05). 

Confocal Laser Scanning Microscopy 

To investigate spatial location and presence of cell matrix and cell-cell adhesion 

molecules in AVECs, CLSM was used to visualize expression of PECAM-1, 1-Integrin, 

VE-Cadherin and Vinculin. Figure 3.5  (A, C, E) demonstrates that FECs experienced an 

increase in PECAM-1 production when strained at 20%.  These images show PECAM-1 

spreading out from the cell with this increase in strain. Figure 3.5 (B, D, F) indicates that 

there is no significant change in protein concentration for all levels of cyclic strain in 

ventricularis cells. PECAM-1 on the fibrosa side appears to have a relationship to an 

increase in cyclic strain where ventricularis cells are not affected.  

Staining for 1-Integrin in FECs and VECs shows that this protein is changed by 

strain in cells from the fibrosa side of the valve. Figure 3.6 (A, C, E) show similar 

expression of 1-Integrin in static and 10% conditions while cells at 20% strain show an 
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increase of this molecule.  In Figure 3.6 (E), Integrin can be seen spreading out from the 

tight packed location it had in static and 10% cultures. When analyzing VECs the images 

show all test levels produce around equal levels of 1-Integrin. The only side specific 

difference present is at 20% strain where there appears to be an increase of FEC molecule 

production. 

Images captured for VE-Cadherin indicate that the fibrosa side of the valve has an 

unaffected protein regulation while VECs show a relationship to strain.  An increase in 

cadherin production can be visualized in VECs when comparing 20% strain to control 

samples (Figure 3.7 (B) and Figure 3.7 (F)). A side specific difference is represented in 

Figure 3.7 (E) and Figure 3.7 (F) where VECs have a higher level of VE-Cadherin 

expression than FECs. 

Analysis of Viniculin stained images provides evidence that any presence of 

strain produced an up regulation of VECs while FECs had no change for any test 

condition (Figure 3.8). Ventricularis cells appear to increase their vinculin production as 

they are strained. Images in Figure 3.8 (A) and Figure 3.8 (B) indicate the only side 

specific differences occurs when cells are under static conditions. 
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Figure 3.5 Confocal laser scanning microscopy images of FECs (A, C, E) and VECs 
(B, D, F) under static conditions (A, B) and exposed to 24hr of cyclic 
stretch at 10% (C, D), and 20% (E, F). Blue cell nuclei, red F-actin, and 
green PECAM-1. Scale bars represent 10 m. 
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Figure 3.6 Confocal laser scanning microscopy images of FECs (A, C, E) and VECs 
(B, D, F) under static conditions (A, B) and exposed to 24hr of cyclic 
stretch at 10% (C, D), and 20% (E, F). Blue cell nuclei, red F-actin, and 
green 1-Integrin. Scale bars represent 10 m. 
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Figure 3.7 Confocal laser scanning microscopy images of FECs (A, C, E) and VECs 
(B, D, F) under static conditions (A, B) and exposed to 24hr of cyclic 
stretch at 10% (C, D), and 20% (E, F). Blue cell nuclei, red F-actin, and 
green VE-Cadherin. Scale bars represent 10 m. 
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Figure 3.8 Confocal laser scanning microscopy images of FECs (A, C, E) and VECs 
(B, D, F) under static conditions (A, B) and exposed to 24hr of cyclic 
stretch at 10% (C, D), and 20% (E, F). Blue cell nuclei, red F-actin, and 
green Vinculin. Scale bars represent 10 m. 
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CHAPTER IV 

DISCUSSION 

Tissue engineered heart valves offer great promise as a successful alternative to 

traditional valve replacement therapies. The development of these valves is especially 

important for pediatric patients where the valve grows with the individual and artificial 

replacements must be replaced to accommodate growth. The major advantage of a tissue-

based valve is its ability to remodel and adapt to injury and a changing environment. The 

key to this remodeling characteristic is the presence of a viable cell population. A 

fundamental understanding of cell behavior is crucial to predict and prevent adverse 

reactions and potential failure. Once these tissue-engineered valves are implanted in a 

patient they must behave as close to the native valve as possible. They are immediately 

exposed to an extremely demanding and complex mechanical environment. One of the 

major hurdles of developing a useful tissue based valve replacement is insuring that the 

cells of the construct will perform in the correct manner. The results of this study 

demonstrate the need to include strain in the preconditioning of cells prior to implantation 

of the construct into the patient.  

This study found that the adhesion molecule PECAM-1 had no response to 

changes in cyclic strain. This protein had the same response to all levels of strain and did 

not exhibit any side specific differences for any condition or comparison. Though not 

significant at p 0.05, Figure 3.5 shows a small up-regulation of PECAM-1 on the fibrosa 

side in response to cyclic strain. This can be contributed to PECAM-1’s function outside 
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the cell. PECAM-1 senses mechanical stimuli and helps assist an immune response. 

Confocal images show PECAM-1 working around cells at this increased stain state. At a 

cyclic strain of 20% PECAM-1 is likely reacting to the increase in mechanical stimuli 

and assisting with the immune response by migrating monocytes and activating integrins. 

The ventricularis side of the valve shows no reaction to an increase or decrease of cyclic 

strain. This most likely occurs as a result of the stress states on opposing sides of the 

valve. The ventricularis side of the valve experiences extreme strain during the cardiac 

cycle as blood pushes against the surface to open the aortic valve and move into the aorta. 

The cells on this side of the valve are likely conditioned to strain and therefore show no 

response in PECAM-1 production with increased stress to the cells. On the other side of 

the valve the cells aren’t as used to strain and consequently show an increase in PECAM-

1 concentration as the cells are working to produce an immune response to this stress.  

Cyclic strain had an interesting contribution to 1-Integrin protein expression. 1-

Integrin is responsible for cell signaling and cell bonding and is often investigated for its 

prominent interaction with collagen. The ventricularis side of the valve appears to have 

no expression response to changes in cyclic strain while the fibrosa side reacts to 

increased strains. At a p value of p  0.05 there is a significant increased production of 

1-Integrin when cells are strained at 20% in comparison to statically cultured cells. This 

p value indicated there is a 95% probability that protein expression is significantly 

increased. If the probability of significant expression is reduced at 90% (p  0.1) cells at 

10% strain have significant protein production in comparison to static cells. With a higher 

number of replicates in the study it would be likely shown that any level of cyclic strain 

would produce a significant increase in fibrosa ECs. Even though this result isn’t as 

significant as the first conclusion it still represents some importance and should be 
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considered in evaluating results.  This observance is likely due to the cells making 

increased cell/cell and cell/ECM attachments as the strain on the cell is increased. 1-

Integrin interacts with collagen outside of the cell to create bonding. Confocal images 

show us that as these cells are stretched they spread out from cell boarders in an effort to 

interact with collagen and help the cell/ECM network maintain its shape and mobility 

(Figure 3.6). 1-Integrin works not only to help maintain cell shape and cell attachments 

but it also works as a communication system to transduce information from the ECM to 

the cell and also reveal the status of the inside of the cell to the outside. This 

communication allows for rapid and flexible changes in the environment, for example 

when the cell experiences an increase strain.  

There is also an intriguing relationship between fibrosa and ventricularis at the 

20% strain condition. The fibrosa responds to stretch while the ventricularis has no 

significant change for any condition. This difference can be attributed to what is 

occurring on each side of the valve during the cardiac cycle. During systole when the AV 

opens to expel blood out of the ventricle the fibrosa experiences very little strain in 

comparison to the under side of the valve, the ventricularis, that is exposed to high forces 

as blood rushes past. The opposite sides of the valve have likely adapted to the in vivo 

environments and the ventricularis side has developed some resistance to strain where the 

fibrosa side of the valve has an increased response to strain because it hasn’t developed 

the same protective properties. This idea is supported by the results found in this study. 

ELISA testing produced results that showed an increase in 1-Integrin production on the 

fibrosa side as strain was deviated from static where the ventricularis experienced no 

change in production. Here strain is having no effect on the ventricularis cells because 

they are accustomed to a constant strain environment.  
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VE-Caderin is responsible for cell/cell adhesions and cell motility. More 

importantly it is responsible for control of intercellular junctions and their integrity. The 

state of VE-Cadherin outside the cell is directly proportional to the permeability of the 

endothelium. Cadherin is required to maintain a restrictive endothelial barrier (53). VE-

Cadherin shows a correlation to increased strain with cells isolated from the ventricularis 

side of the valve. In these studies, 20% strain is used to represent a pathological strain. 

ELISA results show that cells from the ventricularis have significantly increased VE-

Cadherin molecules at 20% strain indicating an increase of cell/cell attachments in these 

cells. An increase in VE-Cadherin production also shows that in vivo Cadherins are 

responsible for restricting the endothelial barrier and not letting anything pass into the 

cell. Vestweber explains that VE-Cadherin is the major adhesive mechanism for the 

integrity of the endothelial cell contacts and that it needs to be locally down regulated to 

allow anything to pass through the barrier (53). Opposite of this behavior are fibrosa cells 

that show the same level of protein expression for all levels of strain. This indicates that 

fibrosa cells don’t have as strong cell/cell attachments and are more vulnerable to cell 

invasion. This may be a contributor to the propensity for lesions to form there. 

Inflammatory molecules migrate to these cell junctions to enter the cell and a smaller VE-

Cadherin population allows them to penetrate the cell. AV lesions have been found to 

preferentially develop of the fibrosa side of the valve (54,55). An aortic valve subject to a 

chronic inflammatory response may develop calcific lesions, similar to atherosclerotic 

plaques. Non-sclerotic post-mortem valves fail to express the adhesion molecules ICAM-

1, VCAM-1 and E-Selectin, while the pro-inflammatory proteins are present on the 

endothelium of excised non-rheumatic generative diseased valves (56,57). This idea is 

supported by work of Metzler et al. that found an increased level of inflammatory 
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molecules in VECs with a 20% cyclic strain. This study looked at ICAM, VCAM-1 and 

E-Selectin in VECs under varying levels of cyclic stretch using a Flexcell stretch system 

like the one used in this study. They discovered statistically significant up-regulation (p 

0.05) of these inflammatory molecules at 20% when compared to 10% cultures (58). 

Vinculin is a vital accessory molecule involved in force transduction and 

mediating cellular response. It binds intregrins to F-actin networks at the intracellular 

face of the plasma membrane and also mediates cytosksletal mechanics (37). Vinculin 

appears to play a key role in shape control based on its ability to modulate focal adhesion 

structure and function (59). On the ventricularis side of the valve we observe protein 

production to have a statistically significant increase when cells experience stress. This 

supports the finding that cells respond to mechanical stress applied to ligand-bound 

integrins by enlarging focal adhesions (60-63). This is associated with increased 

recruitment of vinculin to focal adhesions (64). Evidence of this migration can be seen in 

B, D and F of Figure 3.8 where vinculin has increased expression and recruitment around 

cells. There is also evidence that vinculin recruitment has a role in strengthening cell 

adhesions (65). The observation of increased vinculin production with increased cell 

stress can also be attributed to an increase and strengthening of cell adhesions in order to 

help the tissue withstand these strains. When cells are tested without strain their protein 

production drops off because without the presence of strain they aren’t stimulated to 

produce vinculin. 

We see a different result on the fibrosa side of the valve where vinculin 

production doesn’t have a significant change with any change of strain condition. This 

could be explained by the same mechanism that cells responded with integrin production. 

On the ventricularis side of the valve cells are conditioned to respond to high levels of 
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strain and protein production is regulated accordingly. On the opposite side of the valve, 

the fibrosa, the cells are not used to high levels of strain and therefore have not developed 

a protection mechanism for cell stress. Therefore, the cells on this side of the valve don’t 

have a change in vinculin production because they haven’t developed the adaptive 

mechanism that cells from the opposite side have.  

These findings support the work of previous studies that demonstrated the 

importance of the demanding environment that valves exist in. They found that this 

environment is important in maintaining homeostasis in the AV and the absence of these 

forces can cause structural and phenotypical changes in the tissue (38-41). The results of 

this study demonstrate the need for physiological strain for cells and their adhesion 

molecules to function properly. Without strain these proteins don’t have any stimulation 

for production. Especially in the case of vinculin and integrin where the need for strain is 

crucial. Tissue engineered valves need the presence of strain during their preconditioning 

treatments in order for these proteins to be expressed and for them to work within the 

tissue. Without strain tissue engineered constructs won’t have the same cell/cell junctions 

as native cells. After implantation this would leave a patient more susceptible to 

inflammation, valve injury or failure. 

It is also important to assess the side-specific differences when using AVECs for 

a tissue engineered heart valve. When looking at the effect of cyclic strain on these cells 

side specific behavior is observed for each protein studied. With PECAM-1 VECs don’t 

experience any change in protein behavior while FECs have an increased production with 

an increased strain of 20%. 1-Integrin concentrations are effected on the fibrosa side of 

the valve and experience an increase as strain percentages are increased. On the opposite 

side of the valve no change in integrin production is observed. Results from VE-Cadherin 
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studies showed that FECs were not affected at all by strain where VECs had an increase 

in VE-Cadherin concentration when strained at 20%. Finally, vinculin results indicated 

that the fibrosa side of the cell did not respond to strain with an increase in production. 

However, the opposing side of the valve experienced a significant increase in vinculin 

concentration with increased strain percentages. With the observance of all these 

opposing behaviors on different sides of the valve it makes an increasingly important 

argument for AVECs to be separated and treated differently when being used for seeding 

onto a tissue engineered construct. 

A major limitation to this study was that mechanosensitive protein expression was 

evaluated in isolated cells. In vivo cells exist in a ECM formed from collagen, elastin and 

glycosaminoglycans; this network provides structural and mechanical support to the 

tissue and cells. It can also help transmit mechanical signals to the network of cells. In 

engineered valves a scaffold material provides this structure. The scaffold can be 

comprised of synthetic polymers (PGLA or PLA) or natural materials (collagen, fibrin or 

decellurized valves). Since the mechanical response of cells can be dependent on the 

ECM environment, the isolated and cultured cells may not be an accurate representation 

of an in vivo reaction. This preliminary data provides great justification for the continuing 

exploration into how cyclic strain can influence and model the in vitvo development and 

pre-conditioning of tissue engineered heart valves.  
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CHAPTER V 

CONCLUSION AND FUTURE STUDIES 

Conclusion 

This study found that cyclic strain has an effect on the adhesion molecules of 

AVECs and that strain should be considered when seeding a scaffold or valve with ECs 

in the construction of an engineered valve. This work demonstrated that strain is needed 

for proper protein expression. It is very possible that strain might stimulate these proteins 

to expression.  This supports the need for pre treating a tissue engineered construct with 

strain prior to implantation to allow for proper valve development. If the construct isn’t 

exposed to strain the same cell/cell and cell/ECM junctions may not form and could leave 

the patient more susceptible to inflammation after implantation.  This study also showed 

that too much strain can cause adverse effects but without strain adhesion proteins aren’t 

properly expressed and cell/cell and cell/ECM junctions aren’t allowed to properly form 

and function. These findings are vitally important for the progression of finding a fully 

successful aortic valve replacement for patients with faulty or insufficient valves. When a 

construct is implanted into a patient it is immediately exposed to a demanding 

mechanical environment so it makes logical sense that the valve would need to be pre-

treated with such stresses. The quantitative results from this work provide support for this 

idea and give ammunition to continue studying the effects of mechanical stresses on 

AVECs 
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Future Studies 

This study focused on looking at adhesion molecule expression in a population of 

isolated and cultured AVECs. Even though this is a sufficient starting place for initial 

research in a specific area it would be beneficial to study the activity of these proteins in 

cells that are attached to an ECM and functioning in their native environment. It would be 

interesting to see if cells being removed from their original 3D habitat would have an 

effect on these proteins. Ideally, a valve would be removed from the host and then 

stretched on a device and protein expression evaluated. This work showed that strain was 

essential for proper protein expression but how do these proteins interact with a potential 

substrate? A decellularized valve would like behave like the membranes used in this 

study. If a polymer scaffold was used would it provide the same signals for expression 

and support the same response? It would also be interesting to use a bigger population of 

samples and see if this has a significant effect on the statistical results. Determining 

protein concentration using another method might also provide some insight and 

comparison data to explore these proteins with. Finally, looking into classifying active 

and inactive adhesion molecules in theses cell populations could be beneficial in more 

validation for this study. There are several more areas that need to be investigated but this 

study provides a good basis and demonstrates the need for further research in this area. 

Extensive research in this area could help provide essential clues into the best design for 

the perfect tissue engineered valve.  
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APPENDIX A 

PROTOCOLS 
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Confocal Microscope of Collagen Membranes 
 

1.   Carefully  remove  Flexcell  plates  from  the  Flexercell  and  aspirate  media.   

2.   Rinse  2X  for  5  min  in  Sterile PBS.    

3.   Fix  for  30  min  in  the  dark  in  fresh  4% PFA  with  slight  agitation at room 

temperature 

4.   Rinse  for  30  min  at  4°C  with  PBS/0.01M  Glycine/0.1%Triton--X. (4° has 

been cited  for  all  steps,  gentle  agitation  is  preferred  on  belly  dancer)   

5.   Rinse  for  15  min  PBS/5%BSA.    

6.   Block  non-specific  binding  for  15  min  with  PBS/5%NGS/5%BSA    

7.   Incubate  overnight(12--8hr)  at  4°C  with  gentle  agitation  in  primary  antibody 

solution in PBS/1%BSA.  

8.   Rinse  for  2X  5min  with  PBS/1%BSA    

9.   Incubate  15  min  PBS/5%BSA/5%NGS    

10. Incubate  2hr  w/  secondary antibody in  PBS/1%BSA.  Protect from light from 

here  on  out    

11. Rinse  15min  PBS/1%BSA    

12. Rinse  15min  PBS   

13. Incubate  for  30min  in  (1:20--1:200  has  worked  well,  w/varied  strength  of 

 staining)  AlexaFluor  635  phalloidin  or  Rhodamine  phalloidin.   

14. Rinse  2X  5min  in  PBS   

15. Incubate for 15 minutes with DAPI in PBS 

16. Rinse twice in PBS  
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17. Cut collagen membranes from plates using a scalpel.  

18. Place membrances on a microscope slide and coat with Flurogel with Tris Buffer 

19. Adhere a coverslip to the slide with cleat nail polish and allow to dry 

Table A.1 Reagents for Fluorescent Staining 

Reagent Company Catalog Number 
Paraformaldehyde Electron Microscopy 

Sciences 
157- 4 

Triton-X Sigma 234729 
Glycine Sigma 410225 

Phosphate Buffered Saline Sigma D5652 
Normal Goat Serum Invitrogen PCN5000 

Bovine Serum Albumin Sigma A7906 
 Mouse Anti Human CD 29 

( 1-Integrin) 
Millipore MAB2247 

 Mouse Anti Vinculin Millipore MAB3574 
 Mouse Anti Rat PECAM-1 Millipore MAB1393 

Anti VE-Cadherin Millipore MAB1989 
AlexaFluor 488 rabbit anti 

mouse IgG1 
Invitrogen A21121 

AlexaFluor 488 rabbit anti 
mouse IgG2 

Invitrogen A21131 

DAPI Invitrogen D3571 
Alexafluor 635 Phalloidin Invitrogen A34054 
Flurogel with Tris Buffer Electron Microscopy 

Scineces 
17985-10 
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Seeding Flexercell Plates 
 
1.  Aspirate  media  from  flask.    

2.  Rinse  with  PBS.    

3.  Add  enough  Trypsin  to  submerge  the  bottom  surface  of  the  container  and 

incubate 5 minutes  

4.  Add  an  equal  amount  of  DMEM/ 10%  FBS /%1  ABAM  and  place  solution  in           

a  centrifuge  tube.  Centrifuge for  5  min  at  1000  rpm  and  aspirate supernatant.    

5.  Re-suspend  in  enough  media  to  allow  for  500,000  cells/well.    

6.  Gently  pipette  500 L  of  solution  into  the  center  of  each  well.    

7.  Let  incubate  for  1  hour,  then  add  2.5  ml  DMEM/10%  FBS/%1  ABAM  to  each 

 well.   
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Cyropreservation 

Freezing 
 
1. Remove old culture medium and rinse with PBS  

2. Add Trypsin to the flask and incubate for 5 minutes 

3. Add equal amount of culture medium and place in a centrifudge tube 

4. Centrifuge 5 minutes at 1000 RPM 

5. Aspirate media/trypsin solution 

6. Resuspend pellet in DMEM/10% FBS/10% DMSO to give desired freezing 

concentration 

7. Aliquot suspension into cryo vials 

8. Place vials in Nalgene Mr. Frosty and place in -80  C freezer overnight 

9. Remove vials and place in -80  C liquid nitrogen 

Thawing and Recovery 
 
1. Unthaw vial by swirling in a 37  C water bath 

2. Uncap vial and pipette cell solution up and down 

3. Put into a centrifudge tube 

4. Add 9ml of DMEM/10% FBS/10% ABAM 

5. Pipette up and Down  

6. Centirfudge 1000 RPM for 3 minutes 

7. Aspirate media 

8. Resuspend in culture media and place in T 25 flask.  

9. Change media within 24 hours 
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Table A.2 Reagents for Cell Culture and Cyropreservation 

Reagent Company Catalog Number 
Dulbecco’s Modified Eagle’s 

Medium 
Sigma D5796 

Fetal Bovine Serum Invitrogen 10437-028 
Antibiotic/Antimycotic Gibco 15240 

Trypsin EDTA Gibco 25300 
Dimethyl Sulfide Sigma D2650 

Freezer Vials VWR 89094-810 
T 12.5 Flasks BD Falcon 353107 
T 25 Flasks BD Falcon 353109 
T 75 Flasks BD Falcon 353136 

Swabs Texwipe TX761 
Syringe Filters VWR 28145-477 

Syringe BD Falcon 309654 
Collagenase Type II Gibco 17101-015 

Filter Bottles Corning 430769 
PBS Sigma D5652 

Nalgene Mr. Frosty Sigma C1562 
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General Lysate Protocol 
 
1. Make lysis buffer according to ELISA directions or use general recipe 

 150 mM Nacl 

 1% NP-40 

 50 mM Tris-Cl (pH 7.4) 

 1 g/ml Leupeptin 

 1 g/ml Aprotinin 

2. Discard the culture medium and wash cells twice with ice- cold PBS 

3. Place culture dishes on ice 

4. Add 1 ml of lysis buffer  

5. Incubate cells for 15 minutes on ice with occasional rocking of dishes 

6. Gently scrape the cell surface with a cell lifter 

7. Tilt the dish and allow the buffer to drain to one side; remove the lysate with a 

pipette ad transfer to a micro centrifuge tube 

8. Freeze the lysate for storage or centrifuge the lysate at 2000 x g for 5 minutes and 

transfer to a clean tube 

Table A.3 Reagents for Lysates 

Reagent Company Catalog Number 
Cell Lifter Sigma CLS 3008 

NaCl Sigma S3014 
NP-40 Alternative Calbiochem 492016 

Tris Sigma 154563 
PBS Sigma D5652 

Aprotinin Sigma A6279 
Leupeptin Sigma L8511 
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